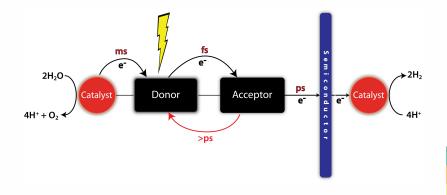
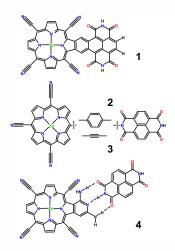
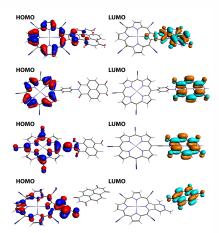

Thomas J. Eisenmayer

Universiteit Leiden


Introduction

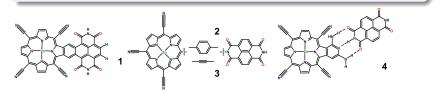
1 | 11


Introduction

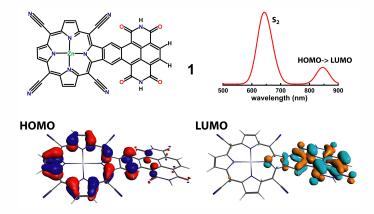

1 | 11

Molecular Dyads

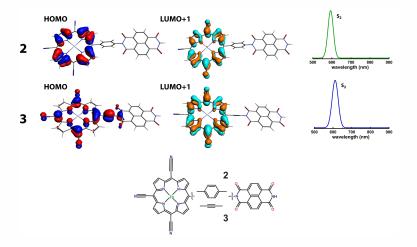
2 | 11


Oxidation Potentials

3 | 11

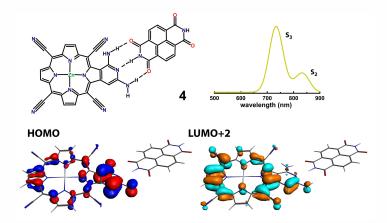

ESOP

$$ESOP = (G^0 - G^+)_{ES,aq} \approx (G^0 - G^+)_{GS,aq} - E_{0-0,aq}$$

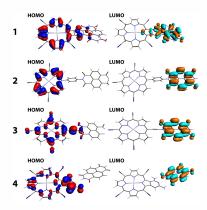


TDDFT; Complex 1

TDDFT; Complex 2 and 3


Leiden Institute of Chemistry.

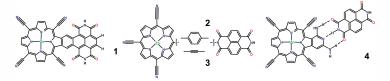
5


11

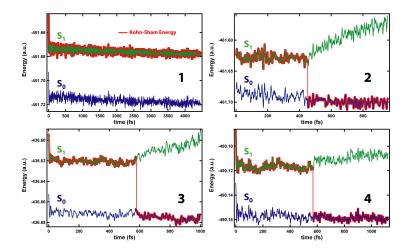
TDDFT; Complex 4

6 | 11

AIMD of Charge Recombination 7 | 11


AIMD
$$M_i \frac{d^2 R_i}{dt^2} = -\nabla_i \langle \Psi_0 | \mathcal{H}_e | \Psi_0 \rangle$$
$$\mathcal{H}_e \Psi_0 = E_0 \Psi_0$$

ROKS


 $E(S_1) = 2E(m) - E(t)$

TDDFT vs ROKS; long range CT 8 | 11

(eV)	ROKS	TDDFT	HOMO-LUMO
1	1.277	1.265	1.106
2	1.508	1.073	1.073
3	1.585	0.728	0.729
4	1.170	0.560	0.531

Nonadiabatic Dynamics with ROKS 9 | 11

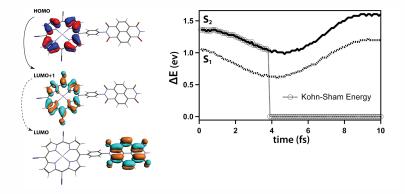
Conclusions

10 | 11

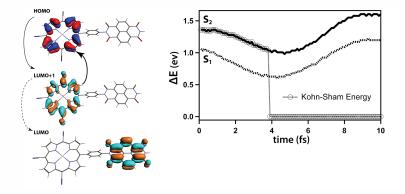
- A computational framework for characterizing artificial photosynthetic modules in terms of oxidation potentials, optical absorption and charge separation/recombination is presented and validated on a series of molecular dyads.
- Complex **1** appears to meet the requirements as charge separation module the best.

Acknowledgements

11


11

- Dr. Francesco Buda
- Prof. Dr. Huub J.M. de Groot
- Nitin Bhugwansing



Nonadiabatic Dynamics with TDDFT of 11 | 11 Charge Separation?

Nonadiabatic Dynamics with TDDFT of 11 | 11 Charge Separation?

