

Optyka nanostruktur

Sebastian Maćkowski

Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: **365**, telefon: **611-3250**

Kropki samorosnące

CdSe/ZnSe QDs

CdTe/ZnTe QDs

SL 2008/2009

Kropki – fluktuacje szerokości

Gęstość stanów

Techniki eksperymentalne

SL 2008/2009

Techniki eksperymentalne

D. Park, et al., JVST **B 16** (1998) 3891

http://www.physik.uni-wuerzburg.de/ TEP/index.html

- -) no mapping possible
- -) fabrication
- -) no statistical information about QD properties

Mikroskopia bliskiego pola

Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit

Eric Betzig and Jay K. Trautman

SL 2008/2009

H. F. Hess, et al., Science **264** (1996) 1740

Mikroskopia bliskiego pola

Mikroskopia bliskiego pola

PHYSICAL REVIEW B

VOLUME 54, NUMBER 24

15 DECEMBER 1996-II

Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots

Pierwsze wyniki

PHYSICAL REVIEW B

VOLUME 50, NUMBER 11

15 SEPTEMBER 1994-I

 $\label{eq:Visible photoluminescence from N-dot ensembles and the linewidth of ultrasmall $Al_yIn_{1-y}As/Al_xGa_{1-x}As$ quantum dots}$

S. Fafard and R. Leon Center for Quantized Electronic Structures (QUEST), University of California, Santa Barbara, California 93106

D. Leonard Center for Quantized Electronic Structures (QUFST) and Materials Department, University of California, Sama Barbara, California 93106

Apertury

Excited state spectroscopy of excitons in single quantum dots

 D. Gammon,^{a)} E. S. Snow, and D. S. Katzer Naval Research Laboratory, Washington, DC 20375-5347
(Received 10 March 1995; accepted for publication & August 1995)

Najważniejsze wyniki

Ekscyton w polu B

SL 2008/2009

Struktura ekscytonu w kropce

Struktura ekscytonu w kropce

Mikroluminescencja

Spektroskopia

mikro PL, apertura 150nm 2.05 2 15 Energia [eV]

SL 2008/2009

Ekscyton w kropce kwantowej

rozszczepienie spinowe $E_{1,2} = \frac{1}{2} \left(\delta_0 \pm \sqrt{(g_1 \mu_B B)^2 + \delta_1^2} \right)$ przesunięcie diamagnetyczne $E_D = \frac{e^2}{8} \left(\frac{\langle r_e \rangle}{m_e} + \frac{\langle r_h \rangle}{m_h} \right) B^2$

Ekscyton w kropce kwantowej

Statystyka

Statystyka

czynnik g ekscytonu

Spektroskopia rezonansowa

absorpcja z wykorzystaniem fononów optycznych

kontrola polaryzacji światła pobudzającego daje możliwość pomiaru dynamiki spinowej ekscytonu

Widmo wzbudzenia kropek

SL 2008/2009

Stany wzbudzone

stany wzbudzone mają podobny rozkład do rozkładu stanów podstawowych, są przesunięte o około 100 meV w stronę wyższych energii

Podobieństwo widm PLE

Obrazowanie luminescencji

widma PLE wskazują na występowanie identycznych rezonansów dla różnych kropek kwantowych w zespole

T. Nguyen, SM, et al., PRB 2007

SL 2008/2009

Obrazowanie luminescencji

Obrazowanie luminescencji

Mapowanie luminescencji

for each emission energy a PL an ~ 8x8 μ m map is collected approximately 10⁵ individual dots can be imaged with a very high signal to noise ration in a single ½ hour acquisition

K. Hewaparakrama, SM, et al., APL 2004

SL 2008/2009

Mapowanie luminescencji

SL 2008/2009

Mapowanie rezonansów

Mapowanie rezonansów

identyczne rezonanse występują dla kropek o różnym położeniu

T. Nguyen, SM, et al., PRB 2007

SL 2008/2009

Model układu

