

Optyka nanostruktur

Sebastian Maćkowski

Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: **365**, telefon: **611-3250**

SL 2008/2009

Eksperyment optyczny

LIGHT SOURCE

MONOCHROMATOR

PMT

-) roztwór czy ciało stałe, temperatura

SAMPLE

- -) pomiar dynamiczny lub stacjonarny
- -) zakres widmowy pobudzenia i emisji
- -) szybkość zachodzących procesów (czy ps czy s)
- -) ... (rozdzielczość, natężenie światła, liczba obiektów)

SL 2008/2009

Diagram Jabłońskiego

Typowe czasy

absorpcja: 10^{-15} s relaksacja wibracyjna: $10^{-12} - 10^{-10}$ s czas życia w stanie S1: $10^{-10} - 10^{-7}$ s, konwersja wewnętrzna: $10^{-11} - 10^{-9}$ s konwersja międzysystemowa: $10^{-10} - 10^{-8}$ s czas życia stanu T1: $10^{-6} - 1$ s

Typowe widmo fluorescencji

Aparat fotosyntetyczny

Organizmy fotosyntetyczne

Kompleks LH2

membrana – model

X. Hu, T. Ritz, A. Damjanovic, F. Autenrieth, & K. Schulten (2002) Q. Rev. Biophys. **35**, 1–62

membrana – obraz AFM

Scheuring S. & Sturgis J. (2005) Science **309**, 484-487

Struktura kompleksu LH2

struktura LH2 została określona z dokładnością 2.5 Å przy pomocy krystalografii promieni X (X-ray crystallography)

McDermott, G., Prince, S., Freer, A., Hawthornthwaite-Lawless, A., Papiz, M., Cogdell, R. & Isaacs, N. (1995) Nature **374**, 517-521

SL 2008/2009

Struktura kompleksu LH2

PIĘKNA SYMETRIA

27 molekuł bakteriochlorofilu tworzących dwa pierścienie

B850 – silne oddziaływanie, odległość między najbliższymi sąsiadami ~ 9 Å

B800 – słabe oddziaływanie, odległość między najbliższymi sąsiadami ~ 21 Å

SL 2008/2009

Własności optyczne

szybki i wydajny przekaz energii między karotenoidami a chlorofilem fluorescencja związana z pierścieniem B850

T. Polivka and V. Sundström, (2004) Chem. Rev. **104**, 2021

Absorpcja i przekaz energii

kaskadowy przekaz energii między antenami LH2, LH1 i centrum reakcji

SL 2008/2009

0

Pierwsze wyniki

mikroskopia konfokalna unieruchomionych kompleksów LH2 energia pobudzania – 800 nm rozdzielczość przestrzenna – 700 nm rozdzielczość czasowa ~ 100 ps

Bopp, M. A., Jia, Y., Li, L., Cogdell, R. J. & Hochstrasser, R. M. (1997) Proc. Natl. Acad. Sci. USA **94**, 10630–10635

SL 2008/2009

brak informacji spektralnej

Pierwsze wyniki

gaszenie fluorescencji w jednym kroku – efekt silnego oddziaływania między molekułami tworzącymi pierścień B850

Bopp, M. A., Jia, Y., Li, L., Cogdell, R. J. & Hochstrasser, R. M. (1997) Proc. Natl. Acad. Sci. USA **94**, 10630–10635

SL 2008/2009

Mikroskop konfokalny

T=300K

Droga wzbudzenia

Droga detekcji

SL 2008/2009

Współczynnik załamania

Złącze p-n

złącze p-n powstaje przez połączenie dwóch półprzewodników, z których jeden jest domieszkowany na typ p a drugi na typ n domieszki mają charakter płytkich donorów i akceptorów co zapewnia podobną koncentrację elektronów i dziur przy granicy

Fotodioda lawinowa

fotodioda lawinowa – avalanche photodiode – jeden z najbardziej czułych fotodektorów

SL 2008/2009

Złącze p-n

złącze p-n w warunkach zewnętrznej różnicy potencjałów

kierunek zaporowy

kierunek przewodzenia

Animacja

http://www.mtmi.vu.lt/pfk/funkc_dariniai/diod/

SL 2008/2009

Fotodioda

fotodioda *pn*, polaryzacja w kierunku zaporowym

pary elektron-dziura tworzone w trzech regionach

E

D

- 0

Fotodioda p-n & p-i-n

fotodioda p-n fotodioda p-i-n

7

-0+

Obszar

dyfuzji

napięcie w kierunku zaporowym, około 30 V prąd ciemny ~ 10 nA czas odpowiedzi ~ 200 ns (p-n), ~ 5 ns (p-i-n) **brak wzmocnienia**

SL 2008/2009

pary elektron-dziura tworzone w obszarze neutralnym bez pola elektrycznego – tylko dyfuzja rekombinacja spontaniczna zerowy wkład do mierzonego prądu w obwodzie

region 2

Generacja nośników

pary elektron-dziura tworzone w pobliżu obszaru zubożonego dzięki dyfuzji nośnik może trafić do obszaru zubożonego wkład do mierzonego prądu w obwodzie dają elektrony z obszaru *p* i dziury z obszaru *n*

SL 2008/2009

Fotodiody p-i-n

typowe diody p-i-n i ich charakterystyki

Parameter	Symbol	Unit	Si	Ge	InGaAs
Wavelength	λ	μm	0.4–1.1	0.8–1.8	1.0-1.7
Responsivity	R	A/W	0.4-0.6	0.5-0.7	0.6-0.9
Quantum efficiency	η	%	75–90	50-55	60–70
Dark current	I_d	nA	1–10	50-500	1-20
Rise time	T_r	ns	0.5-1	0.1-0.5	0.02-0.5
Bandwidth	Δf	GHz	0.3-0.6	0.5–3	1–10
Bias voltage	V_b	V	50-100	6–10	5–6

Generacja nośników

region 1

pary elektron-dziura tworzone w obszarze zubożonym silne pole elektryczne – separacja nośników brak rekombinacji spontanicznej prąd w kierunku zaporowym

SL 2008/2009

Jonizacja

jonizacja – w przypadku gdy pole elektryczne przekroczy określoną wartość, większą niż przerwa energetyczna, nośniki uzyskują energię, która jest wystarczająco duża by wygenerować parę elektron - dziura

Typowe APD

Parameter	Symbol	Unit	Si	Ge	InGaAs
Wavelength	λ	μm	0.4-1.1	0.8 - 1.8	1.0-1.7
Responsivity	$R_{\rm APD}$	A/W	80-130	3-30	5-20
APD gain	М		100-500	50-200	10-40
k-factor	k_A		0.02-0.05	0.7-1.0	0.5-0.7
Dark current	I_d	nA	0.1-1	50-500	1–5
Rise time	T_r	ns	0.1-2	0.5-0.8	0.1-0.5
Bandwidth	Δf	GHz	0.2-1	0.4-0.7	1-10
Bias voltage	V_b	V	200-250	20-40	20-30

Eksperymenty w T<300K

mikroskopia i spektroskopia konfokalna

pomiar zależności polaryzacyjnych: przy pobudzeniu pierścienia BChl o wyższej energii, emisja molekuł z pierścienia B850 nie zależy od polaryzacji pobudzania

unieruchomionych kompleksów LH2 energia pobudzania – 800 nm

radykalna poprawa fotostabilności kompleksu LH2 w niskiej temperaturze

Tietz, C., Cheklov, O., Drabenstedt, A., Schuster, J. & Wrachtrup, J. (1999) J. Phys. Chem. **B 103**, 6328–6333

SL 2008/2009

SL 2008/2009

Symetria kompleksu LH2

rozszczepienie poziomów ekscytonowych

Dynamika konformacyjna

pojedynczy kompleks LH2, pasmo B800

Hofmann, C., Aartsma, T.J. Michel, H., and Kohler, J. (2003) Proc. Natl. Acad. Sci. 100, 15534-15538

hierarchiczny model krajobrazu energetycznego białka tworzącego kompleks LH2

SL 2008/2009

SL 2008/2009

Perydynina-chlorofil-białko

Amphidinium carterae

struktura (krystalografia promieni X)

E. Hofmann et al., Science (1996)

Perydynina-chlorofil-białko

monomer PCP

Chl:Per - 1:4 dominująca absorpcja - karotenoidy słabe oddziaływanie między Chl

SL 2008/2009

PCP – własności optyczne

wydajność kwantowa ~30% długość fali emisji ~ 673 nm absorpcja w zakresie 400-550 nm

D. Zigmantas et al. PNAS (2002)

SL 2008/2009

Metoda badawcza

mikroskop konfokalny LSM 410 obiektyw immersyjny NA = 1.3 rozmiar obrazu 30 μ m x 30 μ m moc lasera I = 32 μ W plamka lasera ~ 300 nm energia lasera 532 nm, 632 nm

Oddziaływanie Chl-Chl

dwustopniowy zanik intensywności świecenia – słabe oddziaływanie

niezależny pomiar fluorescencji z obu ChI w monomerze

S. Wörmke, SM, et al., BBA - Bioenergetics 1767 (2007) 956

Oddziaływanie Chl-Chl

native complexes that contain six Chl a molecules feature multiple intensity steps

SL 2008/2009

Dynamika białka

wzrost szerokości rozkładu energii fluorescencji PCP

