

Optyka nanostruktur

SL 2008/2009

Sebastian Maćkowski

Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: **365**, telefon: **611-3250**

Perydynina-chlorofil-białko

Amphidinium carterae

struktura (krystalografia promieni X)

E. Hofmann et al., Science (1996)

SL 2008/2009

<image><image><image><image><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block>

Perydynina-chlorofil-białko

monomer PCP

Chl:Per - 1:4 dominująca absorpcja - karotenoidy słabe oddziaływanie między Chl

H H H H H H H H COOCH₃ C₂₀H₃₉

R2

В

R.

Chlorofile

SL 2008/2009

Inne typy chlorofilu

Pigment	Fluorescence maximum [nm]	Extinction coefficient [mM ⁻¹ cm ⁻¹]	Lifetime [ns]	Quantum yield [%]	Per to Chl transfer time [ps] ¹
Chl a	672	78.8 at 662 nm	3.68	24	3.55
Chl b	651	46.9 at 644 nm	1.4	11	9.4
acChl a	692	65.2 at 667 nm	3.86	21	2.55

czy istnieją sposoby wpływania na własności optyczne układów fotosyntetycznych?

bsorption

400

500

600 700 800

Wavelength [nm]

900 1000

the presence of metal nanostructure in the vicinity of an emitting dipole strongly affects the optical properties of a fluorophore

Zasadnicza idea

Teoria

Tłumienie emisji

PCP + Au NPs

(Chl b)₂-N-PCP, emission @ 651 nm

PCP + Au NPs

strongest quenching occurs for ChI *b* – reconstituted N-PCP due to largest overlap with the absorption of Au colloid

SL 2008/2009

Wzmocnienie emisji

J. Lee, et al. Nano Lett. 2004, Nat. Materials 2007

stimulation of photon emission by electromagnetic field generated through plasmons excited in Au NPs

SL 2008/2009

Wzmocnienie emisji

J. Lee, et al. Angew. Chemie Int. Ed. 2006

increase of NW absorption due to plasmonic excitations in Ag nanoparticles

Wzmocnienie emisji

cząstki metaliczne + nanokryształy półprzewodnikowe

Własności optyczne

Wzmocnienie emisji

SL 2008/2009

Wyspy srebrne (SIF)

J. Lakowicz, *et al.* Analytical Biochem. 2002 K. Ray, *et al.* J. Am. Chem. Soc. 2006

wzrost intensywności fluorescencji

Time (ns)

Pojedyncze nanokryształy + SIF

K. Ray, et al. J. Am. Chem. Soc. 2006

Fluorescence Lifetime (ns)

Wyspy srebrne

SL 2008/2009

PCP na wyspach srebrnych

silny wzrost intensywności emisji dla kompleksów PCP znajdujących się w pobliżu srebrnych wysp SM, S. Wörmke, *et al.*, Nano Lett. **8** (2008) 558

SL 2008/2009

PCP na wyspach srebrnych

wzrost intensywności fluorescencji spowodowany większą absorpcją światła przez kompleks fotosyntetyczny

> SM, S. Wörmke, *et al.,* Nano Lett. **8** (2008) 558

> > SL 2008/2009

PCP na wyspach srebrnych

SM, S. Wörmke, *et al.,* Nano Lett. **8** (2008) 558

Pojedyncze kompleksy PCP

rozkład wielkości wysp srebrnych, odległości między wyspami i kompleksami PCP, a także ich wzajemnej orientacji

Pojedyncze kompleksy PCP

wzmocnienie fluorescencji układu biologicznego pod wpływem oddziaływania z cząstką metalu

> SM, S. Wörmke, *et al.,* Nano Lett. **8** (2008) 558

Przekaz energii

Przekaz energii

